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Abstract
This paper discusses the connections between numerical methods for ordinary
differential equations, fixed point iterations and sequence transformations.

PACS numbers: 02.30.Ks, 02.30.Hq, 02.60.Jh, 05.45.-a

Books on chaos and fractals are concerned, on the one hand, with continuous dynamical
systems, and, on the other hand, with the dynamics of iterations in discrete dynamical systems.
There exists a strong connection between numerical methods for the integration of ordinary
differential equations (ODEs) and fixed point iterations (FPIs). This connection has already
been studied (see [14, chapter 5, pp 197–343] or [25, chapter 6, pp 165–201] for an introduction,
and [30] for an extended review), but the dynamics of the iterations generated by a numerical
method for ODEs was mainly used for understanding the behaviour of the solution of the
differential equation.

In this paper, we are mostly interested in FPIs. We will see that FPIs can be considered as
coming from methods for the numerical integration of ODEs. Reciprocally, numerical methods
for ODEs can be used in the solution of fixed point problems. So, FPIs can lead to new methods
for the numerical integration of ODEs, and conversely. The link with sequence transformations,
used in numerical analysis to accelerate the convergence, will also be discussed.

1. Differential equations

We consider the system of p autonomous differential equations

ẋ(t) = f (x(t)) (1)

with the initial condition at 0 (which does not restrict the generality since f is independent of
t) x(0) = x0. The dot represents differentiation with respect to t .

Let us recall some well known facts; see, e.g., [13], [15] or [31]. The path followed by
the point x(t) is called the trajectory of (1) since the variable t can always be referred to as
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the time. The system (1) is called a continuous dynamical system. It is well known that its
trajectory can exhibit quite different behaviours. Transients decay to zero when t goes to
infinity, while steady states remain after the transients disappear. If ∀t � 0, x(t) = x∗, then
ẋ(t) = f (x∗) = 0. So, x∗ is a special type of steady state called an equilibrium point of the
differential equation. Other important steady states are orbits (periodic trajectories such that
x(t) = x(t + nT ), ∀t � 0 and ∀n ∈ N, where T is the period). These two types of steady
states are the only possible ones for one- or two-dimensional systems but, as shown by Lorenz’
discovery [26] in 1963, this is no longer true for higher-dimensional systems which can have
a chaotic behaviour (see, e.g., [28]).

The equilibrium x∗ is called stable if ∀ε > 0, ∃δ > 0 such that ‖x0 − x∗‖ < δ implies
‖x(t)− x∗‖ < ε for all t > 0. It is said to be asymptotically stable if it is stable and if ∃δ > 0
such that ‖x0 − x∗‖ < δ implies limt→∞ x(t) = x∗.

Assuming that f is differentiable in a neighbourhood of x∗, we have (the prime denotes
differentiation with respect to x)

f (x(t)) = f (x∗ + x(t) − x∗) = f (x∗) + f ′(x∗)(x(t) − x∗) + o(x(t) − x∗)

and thus, setting e(t) = x(t) − x∗,

ė(t) = f ′(x∗)e(t) + o(e(t)). (2)

If all eigenvalues of the Jacobian matrix f ′(x∗) have strictly negative real parts, then x∗ is
asymptotically stable and, if ‖x0 − x∗‖ < δ,

lim
t→∞ x(t) = x∗.

2. Fixed point iterations

Let F : R
p �−→ R

p and x∗ a fixed point of F , that is x∗ = F(x∗). We will discuss several
types of FPIs for the computation of x∗ and show that they can be interpreted as methods for the
numerical integration of ODEs. It means that FPIs can serve for integrating ODEs. Conversely,
numerical methods for ODEs can be used for finding the fixed point x∗. This double connection
can lead to new methods either for fixed point problems or for the numerical integration of
ODEs. FPIs are also often referred to as discrete dynamical systems. For the stability of
solutions of difference equations, see [11, 24, 33].

2.1. One-step iterations

We consider the FPIs

xn+1 = F(xn) n = 0, 1, . . . (3)

where x0 ∈ R
p. If F is assumed to be differentiable in a neighbourhood of x∗, it is well known

that ∃V (called the domain of attraction of x∗ for the iterations (3)) such that, ∀x0 ∈ V , the
sequence (xn) converges to x∗ if the spectral radius of F ′(x∗) is strictly smaller than one (see,
e.g., [27, p 300]). So, as pointed out in [9,10,23], the convergence of the iterative method (3)
is related to the stability of the equilibrium point x∗. Indeed, the iterations (3) can be rewritten
as

xn+1 = xn + h(F (xn) − xn) n = 0, 1, . . . (4)

with h = 1, which is the Euler method with the stepsize h = 1 for the numerical integration
of the system of autonomous differential equations

ẋ(t) = F(x(t)) − x(t) = f (x(t))
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and xn is an approximation of the exact solution x(tn) of this differential equation, with the
initial condition x(0) = x0, at the point tn = nh. Obviously, a different stepsize h can be
chosen since x∗ also satisfies x∗ = x∗ + h(F (x∗) − x∗). So FPIs are related to numerical
methods for the integration of ODEs.

The fixed pointx∗ has to be an asymptotically stable equilibrium of the differential equation
which, as seen in section 1, means that all eigenvalues of f ′(x∗) have strictly negative real
parts. If they all have strictly positive real parts, one can consider, without loss of generality,
the differential equation ẋ(t) = f (x(t)) with f (x(t)) = x(t) − F(x(t)).

If the Euler method (4) is applied with a stepsize h � 0, then the convergence condition
given above for the FPIs is satisfied if the spectral radius of the matrix I + h(F ′(x∗) − I ) is
strictly smaller than one. This condition is equivalent to the condition that the eigenvalues of
F ′(x∗) are inside the open disc of centre 1 − 1/h and radius 1/h. Since F ′(x∗)− I = f ′(x∗),
this is also equivalent to the condition that the eigenvalues of f ′(x∗) are inside the open disc
of centre −1/h and radius 1/h.

We remind ourselves that a numerical method for differential equations is A-stable if,
when applied to the model problem ẋ(t) = Ax(t), where A is any matrix whose eigenvalues
have negative real parts, then ∀h > 0, limn→∞ xn = 0. Since limt→∞ x(t) = 0, it means that
the exact and the approximate solutions must have the same asymptotic behaviour. A linear
explicit method cannot beA-stable. The domain of absolute stability of a method is the domain
of the complex plane where the eigenvalues of hA have to be such that limn→∞ xn = 0. For
the Euler method, it is the open disc of centre −1 and radius 1. So, if we consider the linearized
differential equation ẋ(t) = f ′(x∗)x(t), the domain of absolute stability of the Euler method
coincides with the domain of attraction of x∗ for the iterations (4). As we will see now, this
result is, in fact, more general.

Instead of the Euler method, other methods can be used for the numerical integration
of (1). For example, we can take any explicit r-stage Runge–Kutta method:

xn+1 = xn + h ϕ(xn, h) n = 0, 1, . . . (5)

with

k1(u, h) = f (u)

k2(u, h) = f (u + a21h k1(u, h))

...

kr (u, h) = f (u + ar1h k1(u, h) + · · · + ar,r−1h kr−1(u, h))

ϕ(u, h) = c1k1(u, h) + · · · + crkr(u, h)

with the consistency condition c1 + · · · + cr = 1.
The sequence (xn) obtained by (5) can also be considered as FPIs for the computation of

x∗ such that f (x∗) = 0.
We consider the case of one single equation, that is p = 1, and we set

S = {h | − 1 < 1 + h ϕ′
x(x

∗, h) < 1}
where ϕ′

x denotes the partial derivative of ϕ with respect to its first variable. Then, ∀h ∈
S, ∃V (h) such that, ∀x0 ∈ V (h), the FPIs (5) converge to x∗.

Let us apply an explicit Runge–Kutta method to the model problem ẋ(t) = f ′(x∗)x(t).
We have

Theorem 1. The domain of absolute stability of an explicit Runge–Kutta method coincides
with S.
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Proof. The condition −1 < 1 + h ϕ′
x(x

∗, h) < 1 gives (the ki are also derived with respect to
their first variable)

−1 < 1 + h(c1k
′
1(x

∗, h) + · · · + crk
′
r (x

∗, h)) < 1.

We have

k′
i (u, h) = (1 + ai1h k′

1(u, h) + · · · + ai,i−1h k′
i−1(u, h))

×f ′(u + ai1h k1(u, h) + · · · + ai,i−1h ki−1(u, h)).

But ki(x∗, h) = 0 and, thus,

k′
i (x

∗, h) = (1 + ai1h k′
1(x

∗, h) + · · · + ai,i−1h k′
i−1(x

∗, h))f ′(x∗).

Moreover, it is easy to see by induction that k′
i (x

∗, h)xn is identical to ki(xn, h) obtained by
an explicit Runge–Kutta method when applied to ẋ = f ′(x∗)x. So, for this model problem,

xn+1 = xn + hϕ(xn, h) = (1 + hϕ′
x(x

∗, h))xn

and the domain of absolute stability of an explicit Runge–Kutta method is defined by
|1 + hϕ′

x(x
∗, h)| < 1. �

This result was already implicitly used in [2].
Let us now discuss the choice ofh in the casep = 1. When an explicit r-stage Runge–Kutta

method is applied to the model problem ẋ(t) = λx(t), we see, from the proof of theorem 1,
that xn+1 = Pr(hλ)xn where Pr is a polynomial of degree r . The domain of absolute stability
is the set of hλ such that −1 < Pr(hλ) < 1. In order to obtain a good approximation of x∗, the
differential equation has to be integrated over a long time interval. So, h must be as large as
possible. The condition for absolute stability and convergence becomes −2 < hϕ′

x(x
∗, h) < 0

and the largest possible value for h is such that hϕ′
x(x

∗, h) = −2. On the other hand, the error
|xn − x(tn)| increases with h and, if h is divided by α, the error is divided by αq , where q is
the order of the Runge–Kutta method. However, in that case, the number of steps to reach
the same abscissa is multiplied by α. So, we have to make a compromise between these two
antagonistic objectives. Moreover, the model problem is only an approximation of (2). So,
taking h such that Pr(hλ) = 0 (or, equivalently, so that hϕ′

x(x
∗, h) = −1) is the optimal

choice. So, when a Runge–Kutta method is used for computing the fixed point x∗, we have,
since, for all h, ϕ(x∗, h) = 0,

Corollary 1. The FPIs xn+1 = xn + hϕ(xn, h), n = 0, 1, . . . have order 2 at least if and only
if h satisfies

1 + hϕ′
x(x

∗, h) = Pr(hf
′(x∗)) = 0.

So, accordingly, the optimal stepsize for the Euler method is h = −1/f ′(x∗), which leads
to FPIs of order 2 at least for a simple zero.

Since x∗ is unknown, we will replace h in (5) by a variable stepsize hn approximating the
optimal one. So, we now consider iterations of the form

xn+1 = xn + hnϕ(xn, hn) n = 0, 1, . . . . (6)

For these iterations, we have

xn+1 − x∗ = xn − x∗ + hn[ϕ(x∗, hn) + ϕ′
x(x

∗, hn)(xn − x∗) + O((xn − x∗)2)]

= [1 + hnϕ
′
x(x

∗, hn)](xn − x∗) + hnO((xn − x∗)2)

since ∀hn, ϕ(x∗, hn) = 0. So, we immediately obtain the following result which generalizes
corollary 1
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Theorem 2. The FPIs (6) have a superlinear convergence (that is, an order strictly greater
than 1) if and only if

lim
n→∞hnϕ

′
x(x

∗, hn) = −1.

If the expression for hn only involves xn, then the order is 2 at least.

The last statement comes from the fact that, in this case, the order is an integer.
Let us look into the explicit two-stage Runge–Kutta method. We have

hϕ′
x(x

∗, h) = (c1 + c2)hf
′(x∗) + c2a21[hf ′(x∗)]2.

Since this method has order one at least, the consistency condition says that c1 +c2 = 1. If (hn)
tends to the optimal value h = −1/f ′(x∗), then hϕ′

x(x
∗, h) = −1 + c2a21. So, the condition of

theorem 2 cannot be satisfied unless c2 and/or a21 is zero. In both cases, the Euler method (4) is
recovered. So, FPIs corresponding to an explicit r-stage Runge–Kutta method of order strictly
greater than 1 cannot have a superlinear order of convergence. This also means that the order
of the numerical method for integrating the ODE and the order of the corresponding FPI are
not related.

This is the reason why we will now only consider the Euler method (4). Several choices
for hn lead to FPIs (6) with a superlinear convergence

(1) If we take hn = −1/f ′(xn), the Euler method becomes

xn+1 = xn − f (xn)/f
′(xn) n = 0, 1, . . .

and the Newton method for the solution of f (x) = 0 is recovered. It is well known that,
for a simple zero, it has order 2.

(2) Since x∗ also satisfies F(x∗) = F(F(x∗)), the choice

hn = 1

1 − F(F(xn))−F(xn)

F (xn)−xn

= − f (xn)

f (xn + f (xn)) − f (xn)
(7)

leads to the Steffensen method which has order 2 for a simple zero. We see that this method
consists of approximating f ′(xn) in the Newton method by [f (xn+f (xn))−f (xn)]/f (xn).

(3) The secant method, whose order is (1 +
√

5)/2 � 1.618 for a simple zero, is recovered by
taking

hn = 1

1 − F(xn)−F(xn−1)

xn−xn−1

= − xn − xn−1

f (xn) − f (xn−1)
.

The secant method is recovered by approximating f ′(xn) in the Newton method by
[f (xn) − f (xn−1)]/(xn − xn−1).

(4) The choice

hn = − f ′(xn)
[f ′(xn)]2 − f (xn)f ′′(xn)

= − 1

f ′(xn)
1

1 − f (xn)f ′′(xn)
[f ′(xn)]2

gives a method which has order 2 even for a multiple zero.
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(5) The choice

hn = − 2f ′(xn)
2[f ′(xn)]2 − f (xn)f ′′(xn)

= − 1

f ′(xn)
1

1 − f (xn)f ′′(xn)
2[f ′(xn)]2

leads to the Halley method which has order 3 for a simple zero.
(6) Taking

hn = − 1

f ′(xn)

[
1 +

f (xn)f
′′(xn)

2[f ′(xn)]2

]

gives another method of order 3 for a simple zero. It is attributed to Chebyshev (see [7]).

In these last three methods, the first and/or the second derivatives can be replaced by finite
difference approximations, thus leading to other methods. Other choices of hn can also be of
interest.

Explicit multistep, as well as prediction–correction, methods can also be considered. All
these methods can be used with a variable stepsize. However, as noticed in [16], these methods
can introduce spurious fixed points and the order of convergence of the related FPIs does not
seem to be influenced by the order of the method for ODEs. Moreover, none of them isA-stable
since they are linear and explicit. So, an explicit A-stable method should be nonlinear as the
method proposed in [1] (see also [34]) which is

xn+1 = xn + h
2f (xn)

2f (xn) − hf ′(xn)
f (xn) n = 0, 1, . . . .

This method for differential equations was obtained from the confluent form of the ρ algorithm,
a procedure for the computation of the limit of a function when the variable tends to infinity.
It is strongly related to the ρ algorithm, a sequence transformation in the sense defined in
section 3; on this topic, see [4]. This method can also be recovered via the Padé approximation
as explained in [6, pp 238–41]. It is A-stable and has order 2. It can also be interpreted as the
Euler method with variable stepsize

hn = h
2f (xn)

2f (xn) − hf ′(xn)
applied to ẋ(t) = f (x(t)). Replacing f ′(xn) by its approximation (f (xn) − f (xn−1))/(xn −
xn−1) leads to the Euler method with variable stepsize

hn = h
2f (xn)

2f (xn) − h
f (xn)−f (xn−1)

xn−xn−1

.

2.2. Steffensen-type iterations

We set F0(x) = x and Fi+1(x) = F(Fi(x)) for i � 0. A Steffensen-type method for the
computation of the fixed point x∗ consists of the iterations

xn+1 = G(xn, F1(xn), . . . , Fk(xn)) n = 0, 1, . . . (8)

where k is a fixed integer. Obviously, the Steffensen method described in section 2.1 falls into
this category. Steffensen-type methods are given, for example, in [8, 17, 20–22].

As in section 2.1, the iterations (8) can be interpreted as the Euler method with stepsize
h = 1 applied to the differential equation

ẋ(t) = G(x(t), F1(x(t)), . . . , Fk(x(t))) − x(t) (9)
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that is

xn+1 = xn + h[G(xn, F1(xn), . . . , Fk(xn)) − xn] n = 0, 1, . . . . (10)

For example, in the case of the Steffensen method, we have

ẋ(t) = − (F1(x(t)) − x(t))2

F2(x(t)) − 2F1(x(t)) + x(t)
.

This differential equation can be integrated by the Euler method with one of the variable
stepsizes given above or by any other numerical method.

Let us assume that the function G is translative, which means that

G(u0 + b, . . . , uk + b) = G(u0, . . . , uk) + b

and homogeneous, that is

G(au0, . . . , auk) = aG(u0, . . . , uk).

A function G which is translative and homogeneous is called quasi-linear.
By the translativity property, we have

xn+1 − x∗ = G(xn − x∗, F1(xn) − x∗, . . . , Fk(xn) − x∗).

Since G is homogeneous, it holds that

xn+1 − x∗ = (xn − x∗) G(1, (F1(xn) − x∗)/(xn − x∗), . . . , (Fk(xn) − x∗)/(xn − x∗)).

Let us set, for simplicity, F ′(x∗) = ρ �= 1. We have Fi(xn) − x∗ = ρi(xn − x∗) + o(xn − x∗)
and it follows from what precedes [3] (compare with [32, theorem 1, p 113])

Theorem 3. If G(1, ρ, . . . , ρk) = 0, then the sequence (xn) given by (8) converges
superlinearly.

As we will see in section 3, Steffensen-type iterations are linked to sequence
transformations and this result is related to theorems 7 and 8 of section 3. This connection has
been studied in [32, pp 112ff].

Let us come back to the differential equation (9). Since f (u) = F(u) − u, it is easy to
see that

Fi(u) = u + ϕi(u) i = 0, . . . , k

with

ϕ0(u) = 0

ϕi(u) = ϕi−1(u) + f (Fi−1(u)) i = 1, . . . , k.

Thanks to the translativity property of G, we have

G(u, F1(u), . . . , Fk(u)) = G(u + ϕ0(u), . . . , u + ϕk(u))

= u + G(ϕ0(u), . . . , ϕk(u))

and the differential equation (9) becomes

ẋ(t) = G(ϕ0(x(t)), . . . , ϕk(x(t)))

while the FPIs (10) change into

xn+1 = xn + h G(ϕ0(xn), . . . , ϕk(xn)).
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2.3. Multistep iterations

General fixed point multistep iterations for x∗ = G(x∗, . . . , x∗) have the form

xn+1 = G(xn, . . . , xn−k) n = k, k + 1, . . . (11)

where k is a fixed integer and where x0, . . . , xk are arbitrary initial vectors. In the case p = 1,
the secant method given in section 2.1 also belongs to this class.

We can write these iterations as

xn+1 = xn + h[G(xn, . . . , xn−k) − xn]

with h = 1. So, they can be viewed as the Euler method with stepsize h = 1 for the delay
differential equation

ẋ(t) = G(x(t), x(t − h), . . . , x(t − kh)) − x(t).

In the case of the secant method, we obtain

ẋ(t) = − x(t) − x(t − h)

f (x(t)) − f (x(t − h))
f (x(t)).

Instead of h = 1, a variable stepsize can be chosen, as in section 2.1, or another numerical
method for the integration of this delay differential equation.

Let us consider the particular case of fixed point multistep iterations of the form

xn+1 =
k∑

i=0

(hβif (xn+i−k) − αixn+i−k) n = k, k + 1, . . . (12)

with h = 1 and x0, . . . , xk given. They can be considered as being produced by a multistep
method for the numerical integration of the differential equation ẋ(t) = f (x(t)). Let x∗ be a
zero of f . It holds that

x∗ =
k∑

i=0

(hβif (x
∗) − αix

∗) = −x∗
k∑

i=0

αi.

So, we must have 1 +
∑k

i=0 αi = 0, which is one of the necessary and sufficient conditions for
the method (12) to be consistent with the differential equation. The initializations x0, . . . , xk
must be obtained by a one-step method for integrating the differential equation. Again, the
method can be used with a variable stepsize.

3. Sequence transformations

It is well known that fixed point methods are related to sequence transformations (used for
accelerating the convergence of sequences by an extrapolation procedure, see [5]). So, we will
begin with some known results about such transformations.

Let (Sn) be a scalar sequence converging to a limit S. A sequence transformation T is a
mapping of (Sn) into the new sequence (Tn) given by

Tn = G(Sn, . . . , Sn+k) n = 0, 1, . . . (13)

where the function G is assumed to be translative (see section 2.2 for the definition).
As proved in [3], we have

Theorem 4. A necessary and sufficient condition for G to be translative is that it has the
form G(u0, . . . , uk) = g(u0, . . . , uk)/Dg(u0, . . . , uk), where D is the differential operator
D = ∂/∂u0 + · · ·+∂/∂uk and where the function g satisfies D2g ≡ 0. An equivalent condition
is DG ≡ 1.
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For example, the function g corresponding to the Aitken )2 process is g(u0, u1, u2) =
u0u2 − u2

1.
We have [3]

Theorem 5. If G is translative then

G(u0, . . . , uk) =
k∑

i=0

ui
∂G

∂ui
(u0, . . . , uk).

Let us assume that G is quasi-linear (that is, translative and homogeneous). Since G is
translative, we have

G(u0, . . . , uk) = u0 + G(0, u1 − u0, . . . , uk − u0).

But ui − u0 = (ui − ui−1) + (ui−1 − ui−2) + · · · + (u1 − u0) and, so,

G(u0, . . . , uk) = u0 + K(u1 − u0, . . . , uk − uk−1).

Since G is homogeneous, so is K and it follows that

G(u0, . . . , uk) = u0 + (u1 − u0) K

(
1,

u2 − u1

u1 − u0
, . . . ,

uk − uk−1

u1 − u0

)

= u0 + (u1 − u0) H

(
u2 − u1

u1 − u0
, . . . ,

uk − uk−1

uk−1 − uk−2

)
(14)

= u0 + (u1 − u0) G

(
0, 1,

u2 − u0

u1 − u0
, . . . ,

uk − u0

u1 − u0

)
. (15)

A sequence (Sn) which converges to S and is such that ∃ρ �= 1, limn→∞(Sn+1 − S)/(Sn −
S) = ρ is called linearly convergent. We say that T accelerates the convergence of (Sn)

(or, equivalently, that (Tn) converges faster than (Sn)) if limn→∞(Tn − S)/(Sn − S) = 0.
The acceleration of convergence of linearly convergent sequences is, as proved by Germain–
Bonne [12], given by a property of the function H

Theorem 6. A necessary and sufficient condition thatT accelerates the convergence of linearly
convergent sequences is that H(ρ, . . . , ρ) = 1/(1 − ρ).

We also have [3]

Theorem 7. Let (Sn) be a linearly convergent sequence. If Dg(1, ρ, . . . , ρk) �= 0, and
if |g(1, ρ, . . . , ρk)| < M , then (Tn) converges to S. Moreover, if g(1, ρ, . . . , ρk) =
G(1, ρ, . . . , ρk) = 0 then (Tn) converges faster than (Sn).

Let us now relate sequence transformations of the form (13) to FPIs. For computing a fixed
point of F , we associate the Steffensen-type iterative method (8) with the transformation T

defined by (13). For example, the Steffensen method is associated with the Aitken )2 process
which is given by

Tn = Sn − (Sn+1 − Sn)
2

Sn+2 − 2Sn+1 + Sn
n = 0, 1, . . . .

We have the following result which relates the property of convergence acceleration
of linearly convergent sequences with a translative transformation T and the superlinear
convergence of the associated Steffensen-type FPIs [3]

Theorem 8. Let (Sn) be a linearly convergent sequence and let x∗ be a fixed point of F such
that F ′(x∗) �= 1. A necessary and sufficient condition that limn→∞(Tn − S)/(Sn − S) = 0 is
that limn→∞(xn+1 − x∗)/(xn − x∗) = 0.
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Theorems 7 and 8 are related to theorem 3 of section 2.2.
From (14) and (15), we see that the iterations (8) can also be interpreted as the Euler

method for ẋ(t) = F(x(t)) − x(t) with variable stepsize

hn = H

(
F2(xn) − F1(xn)

F1(xn) − F0(xn)
, . . . ,

Fk(xn) − Fk−1(xn)

Fk−1(xn) − Fk−2(xn)

)

= G

(
0, 1,

F2(xn) − xn

F1(xn) − xn
, . . . ,

Fk(xn) − xn

F1(xn) − xn

)
.

These results, which have been extended to the vector case in [18, 29], complete those of
section 2.2. In particular, for the Steffensen method, formula (7) is recovered.

4. Conclusion

In section 2, we saw that FPIs can be seen as methods for the numerical integration of ODEs
with a variable stepsize. So, any fixed point method leads to a numerical method for ODEs.
Conversely, any method for ODEs gives rise to fixed point iterations.

In section 3, we saw that a sequence transformation can be turned into a fixed point
method by replacing Sn+i by Fi(Sn) and vice versa. So, thanks to the discussion of section 2,
any sequence transformation is also related to a numerical method for the integration of the
autonomous differential equation (1), where f (u) = F(u) − u.

In conclusion, methods for the numerical integration of initial value problems for
ordinary differential equations, fixed point iterations, and sequence transformations have been
connected.
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